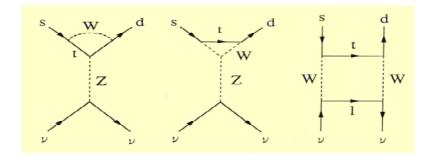
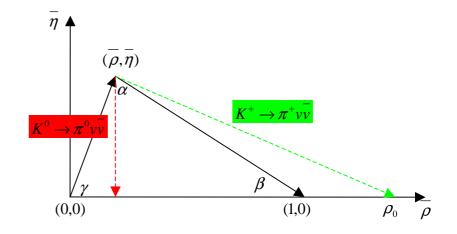
A measurement of the

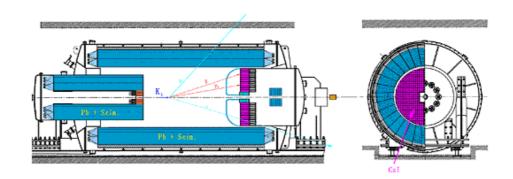
 $K_L^0 \rightarrow \pi^0 v \bar{v} \ \text{decay}$

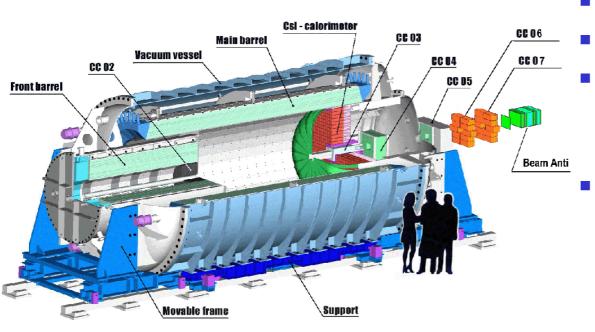
Doroshenko M. Yu.


Outlines


- Motivation of experiment
- Experimental method
- Analysis of one day sample
- Conclusions

Motivation of experiment

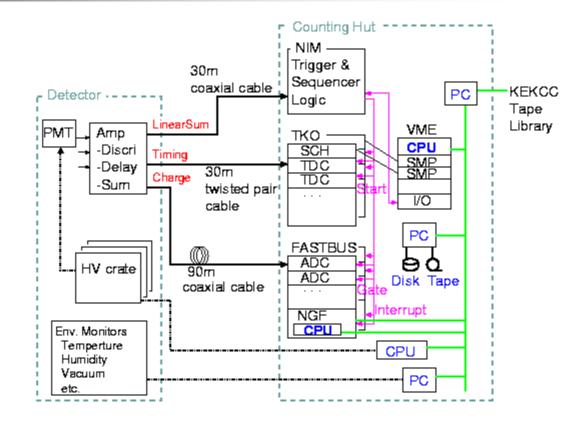

- Direct CP-violation
 - $\Delta S = 1$
- Small theoretical errors
 - Mass of top quark is big
 - Charm contribution is suppressed
- BR ~ $\eta^2 (\eta 15\%)$


Experimental method

- Signal: $K_L^0 -> \pi^0 (-> 2\gamma \text{ calorimeter}) + \nu\nu \text{ (nothing)}$
 - Pencil beam
 - High vacuum in decay volume
 - Detector region ~1Pa
 - Decay volume ~10-4Pa
 - Double decay chamber
 - Highly sensitive veto system

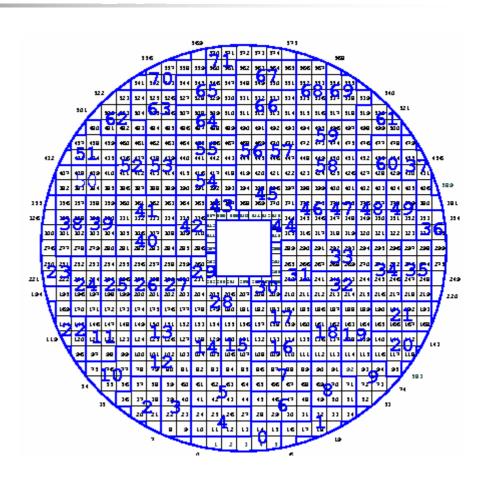
Exp. method: setup

- Undoped CsI calorimeter
- Barrels: MBR, FBR
- Collar counters:
 - CC02-CC07
 - BA
 - Charged veto
 - CHV (before calorimeter)
 - CC04,CC05 charge layers
 - BCHV (along MBR)
 - BHCHV (before BA)


 4π veto: veto detectors + CsI as veto

Requirement of inefficiency $\sim 10^{-4}$ per single γ

DAQ and electronics


- ~1000 channels in total
 - ADC:
 - 0.05 pC/ch(low gain)
 - 0.4pC/ch(high gain)
 - TDC: 0.05 ns/ch
 - MTDC: 0.5 ns/ch up to 16 hit/event
- Environmental monitors
 - Temperature
 - Vacuum
 - Beam conditions
- Amp/Disc module
 - Analog signal -> ADC
 - Logical signal -> TDC stop
 - Sum 8 channels -> trigger

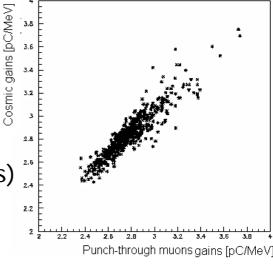
Trigger: Nclus>=2

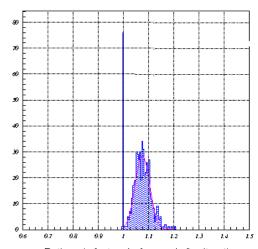
- 576 channels were divided on 72 clusters (Amp/Disc modules)
- Energy threshold for one cluster – 60 MeV
- Count number of cluster

Data taking

- Beam time
 - 16 Feb 30 June, 2004
 - 300 shifts
 - 187 shifts physics data
 - 24 shifts π^0 calibration
 - 89 shifts beam tuning, accidental, calibration
 - 6 TB data ~57 days
 - One day run ~110 GB

- Triggers
 - Physics
 - N > = 2
 - Monitors
 - Pedestal
 - Cosmic
 - Xe/LED
 - CC04 & CC05
 - Accidental triggers
 - by TMON
 - by BA
 - by C6

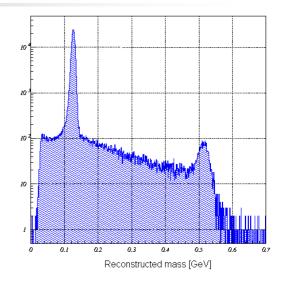



Stability of data

- Various monitors during data taking
 - Pedestals
 - Sigma of pedestal peaks ~1-2ch, stable
 - Peak position stable during long data taking
 - Xenon/LED
 - Xenon monitor PMT's
 - On/off spill <1% for CsI, <10% for veto
 - BA has a shift of 15%

CsI calibration

- Energy calibration
 - By tracking of cosmic muons
 - By punch through muons
 - π^0 production on a target
- Timing calibration by cosmic muons
 - T0 for each channel (Sigma of timing 3.1ns->1.0ns)
 - Delays between crystals in one cluster reduced $\pm 6ns \rightarrow \pm 2ns$ after trimming of cables
- Good consistency between cosmic muons and punch through muons calibration
- π^0 calibration results in ~7% shift of gain constant
 - Non calibrated crystals were simple shifted constantly on a 7%


Ratio gain factors before and after iteration

Calibration by π^0

- Decrease noise to signal ratio 2.2%->0.9% cuts
- Iteration procedure for correction

 - Collect events where one γ hit nth crystal Calculate mass $M_{\gamma\gamma}^n = \sqrt{2 \cdot E_n E(1 \cos \theta)}$
 - Correction factor = $M_{\pi}/M_{\eta \gamma}$

		Main	C	sl	
Front		Barrel			
Barrel		0 2			
					Beam line
(CC02	target			
		2200mm	<u></u>		

	Before iteration	After iteration	PDG
π^0 mass [MeV/c ²]	126 (4.81)	135 (4.27)	135
η mass [MeV/c²]	508 (19.1)	548 (13.5)	547.3

Timing calibration of CsI

For i-th crystal and j-th event

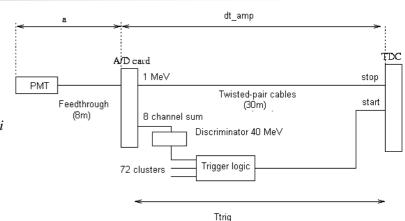
$$TDC^{j}_{i} = Ttrig^{j} + a_{i} + dt _amp_{i} + TOF^{j}_{i} + TOLP^{j}_{i}$$

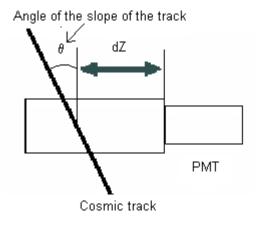
Ttrig: trigger timing

a: PMT-Amp/Disc module

dt_amp: Amp/Disc module - TDC (pulser)

TOF: time of flight (v=30cm/ns)


TOLP: time of light propagation in CsI

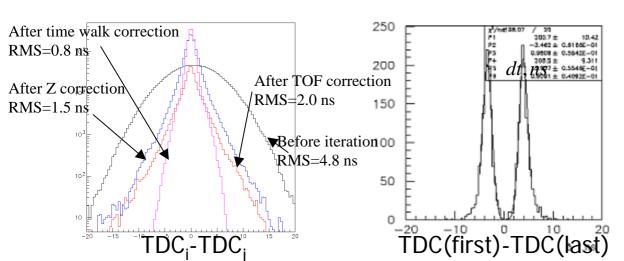

Estimate Ttrig as

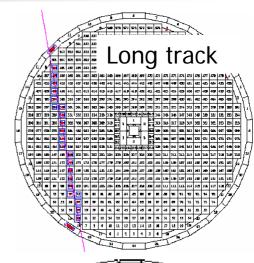
$$Ttrig^{j^*} = \frac{1}{N} \sum_{i=1}^{N} Ttrig_{i}^{j} = \frac{1}{N} \sum_{i=1}^{N} (TDC_{i} - a_{i} - dt _amp_{i} - TOF_{i} - TOLP_{i})$$

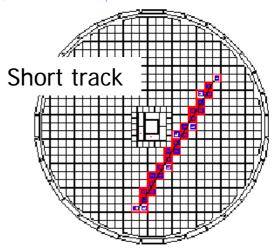
Correction factor as

$$\Delta a_i = Ttrig_i^j - Ttrig_i^{j*}$$

TOLP correction

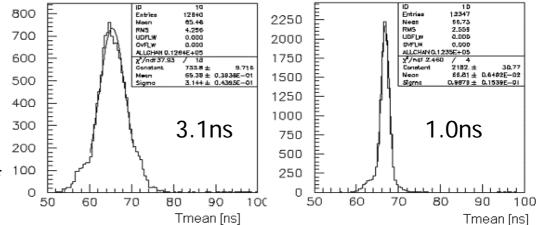


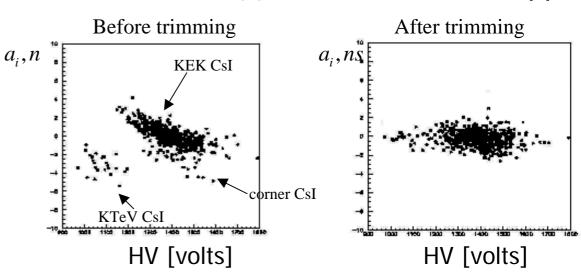

Timing calibration of CsI(2)


Iteration process

- a=0, TOLP=0, long tracks
- Add TOLP, short tracks for inner crystals (c=8.2cm/ns)
- Extend TOLP to long tracks, Slope in Z direction is estimated from timing of inner crystals

$$Ttrig^{j^*} = \frac{1}{N} \sum_{i=1}^{N} Ttrig_{i}^{j} = \frac{1}{N} \sum_{i=1}^{N} (TDC_{i} - a_{i} - dt _amp_{i} - TOF_{i} - TOLP_{i})$$

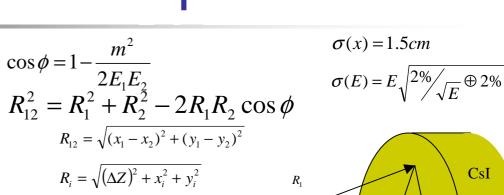


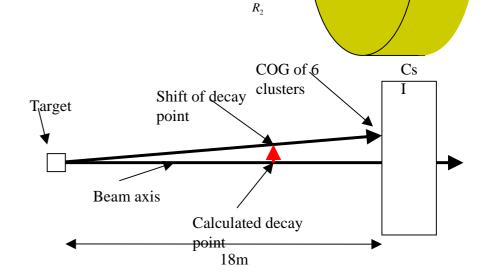

Timing calibration of CsI(3)

Results

- T0 for individual channel
 - Timing resolution of γ 's for K3 π^0
 - 3.1ns->1.0ns
- Delays between crystals in a cluster
 ±6ns → ±2ns
 after trimming

Mean TDC of 6γ 's for K $3\pi^0$





- Hit position: COG 3x3 matrix + angular correction
- Gamma energy: sum 3x3 matrix + 5%
- Decay vertex:
 - Calculate w/o angle and energy corrections
 - Estimate angles of gamma
 - Apply corrections
 - Recalculate decay vertex
 - XY=0
- Tree decays $K_L^0 \rightarrow 3\pi^0 \rightarrow 6\gamma$
 - Calculate Z for each π^0
 - $Z(K^0)$ =mean $Z(\pi^0)$
 - Combination with_minimum

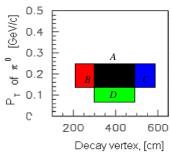
$$\chi^{2} = \sum_{1}^{n} \frac{(Z_{i} - Z)^{2}}{\sigma(Z_{i})^{2}}$$

XY ≠0 (no missing particles)

 ΔZ

Analysis: strategy

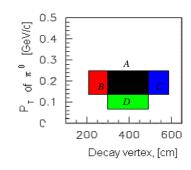
- Separation of the data
 - One-day (this thesis)
 - Identifying of the main sources of background
 - Test our MC
 - Seeing final view and critical check of experiment
 - Comparable sensitivity with KTeV
 - Easy to handle
 - One week, 1/3 and full data sets



Analysis process (I)

- Normalization channel
 - Κ3π,Κ2π,Κγγ
 - Matching MC and data (online type veto for MC)
 - Consistency between them
 - Pure $K3\pi$, $K2\pi$, $K\gamma\gamma$ samples (online type veto for MC)
 - Purity estimation from MC or data
 - Background samples of 4γ and 2γ
- Kπνν study at online type veto
 - Identify source of backgrounds
 - Match MC and data raw spectrums

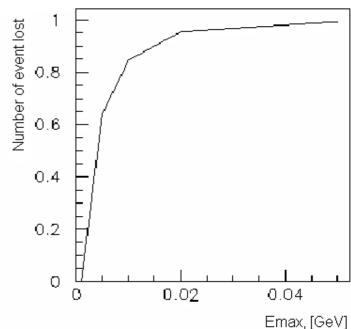
- Select samples of 2γ events of main background sources.
 - Around signal box (B,C,D samples)
- $K\pi^0vv$ MC in signal box acceptance loss
- Optimize the rejection power and acceptance loss



Analysis process (II)

- \blacksquare Κπ⁰νν study (continue)
 - Veto cuts by using real data
 - Background structure
 - Comparison pure signal and background samples
 - Optimize the veto cuts
 - $K3\pi$, $K2\pi$, $K\gamma\gamma$ pure samples acceptance loss
 - "D" sample of 2γ events background rejection
 - Take the ratio of events loss
 - Extrapolate to the Kπ⁰νν decay

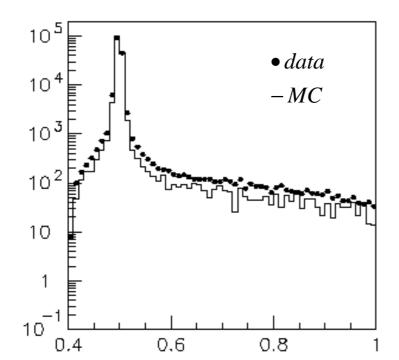
- Acceptance = $Acc (K\pi^0vv MC+kinematical cuts)*Veto acc. (pure samples)$
- Normalization on K3π/K2π/Kγγ decays
- Background estimation

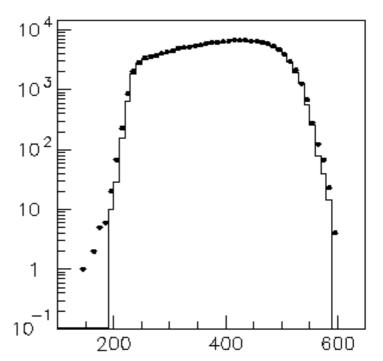


Skimming of data

- Skimming of data
 - Reduce data size
 - ~10% for 2-gamma stream
 - Preliminary sorting by number of gamma
 - Gamma candidate: Emax>50 MeV
 - No add. clusters with Emax>20MeV (CsI veto)
 - No serious acceptance loss <1%

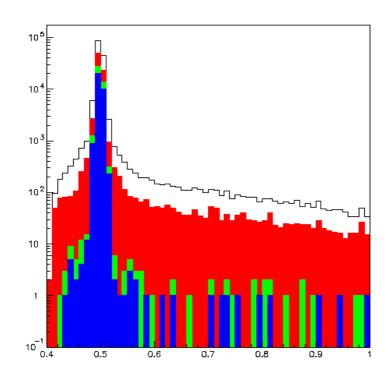
All data	Non-physical triggers	Local max in KTeV	
100%	19.5%	37.9%	

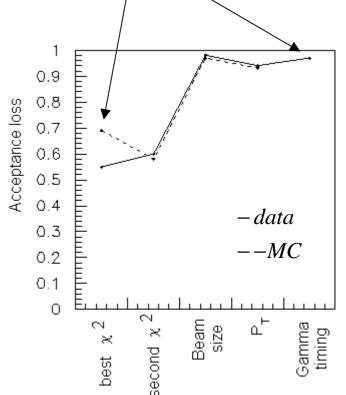

gam1	gam2	gam3	gam4	gam5	gam6	gam7+	gam+bad
15.2%	9.3%	1.9%	1.9%	4.0%	3.9%	0.02%	5.0%



Pure sample $K3\pi^0$

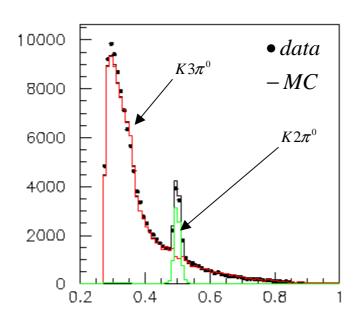
- MC well reproduce the data spectrums
 - except best χ²
 - High and low mass tails come from miss-pairing
 - \bullet Cut for second χ^2 is useful

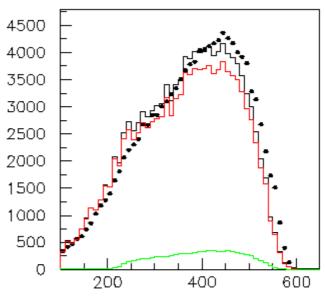



Pure sample $K3\pi^0$

- Pure signal sample: 3 sigma around mass peak after all cuts.
- No background sample

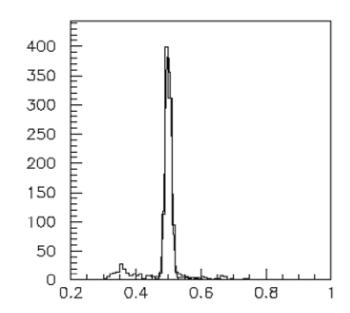
- 29669 events
- $Acc = 1.9x10^{-5}$ (K0@C6)


 $-> x0.77x0.97 = 1.4x10^{-5}$

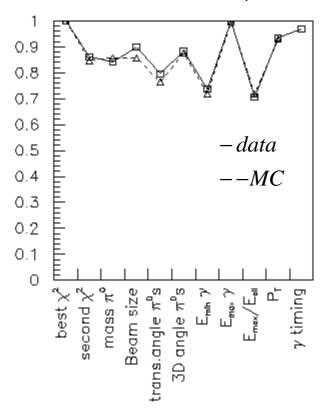


Pure sample $K2\pi^0$

- MC well reproduces the data
 - Main background is $K3\pi^0$ decays
 - Pure background sample: no cuts, outside of 3sigma of mass peak

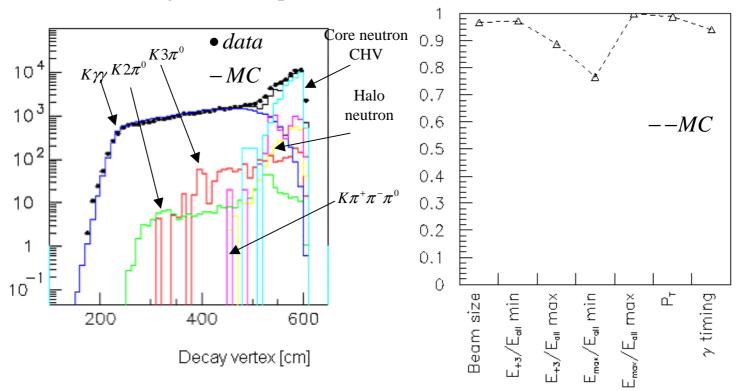


Pure sample $K2\pi^0$


- Pure signal sample: 3sigma of mass peak after all cuts
- Mass peak fit by Gauss+line

991.4 K2p event

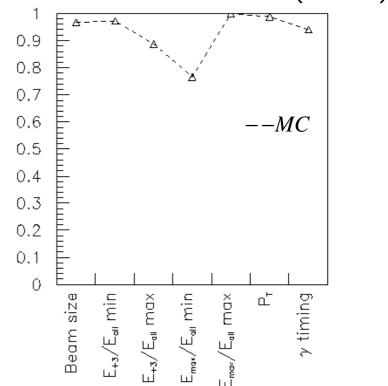
2.7% bgr


 $Acc = 1.12x10^{-4}(K0@C6)$

Pure sample Kyy

- Overlap k3π, K2π, Kγγ, halo neutrons, core neutrons, chg K3π MC
- Z<500cm mostly contains Kγγ
- Background sample: Z>500cm

Pure sample Kyy

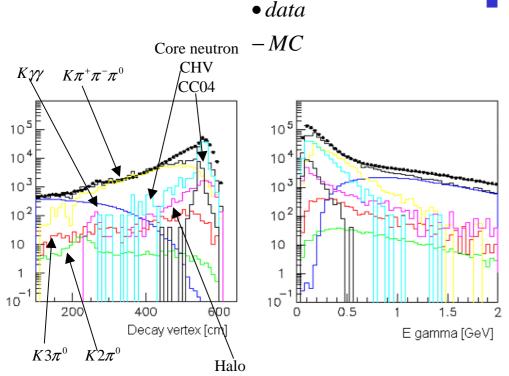

Pure signal sample: apply all cuts

 10^{5} 10^{4} 10^{3} 10^{2} 1

12951 Kγγ events

0.7% bgr

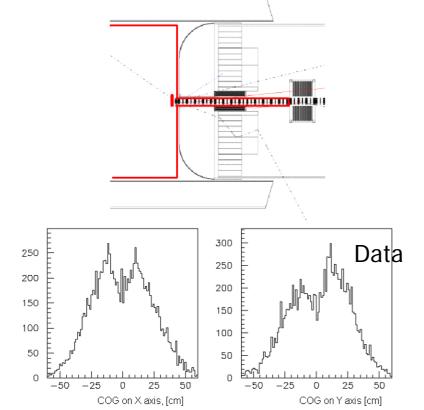
 $Acc = 2.16x10^{-3} (K0@C6)$

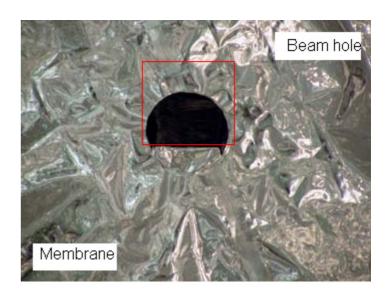

Comparison channels

	$K_L^0 \to 3\pi^0$	$K_L^0 \rightarrow 2\pi^0$	$K_{L}^{0} ightarrow \gamma \gamma$
BR(PDG)	21.13%	9.27x10 ⁻⁴	5.86x10 ⁻⁴
N event	29669	991.4	12951
Acceptance	1.41x10 ⁻⁵	1.09x10 ⁻⁴	2.16x10 ⁻³
Backgrounds contribution	<10-4	2.7%	0.7%
Number of K ⁰ _L @C6	0.99×10^{10}	0.98x10 ¹⁰	1.02×10^{10}

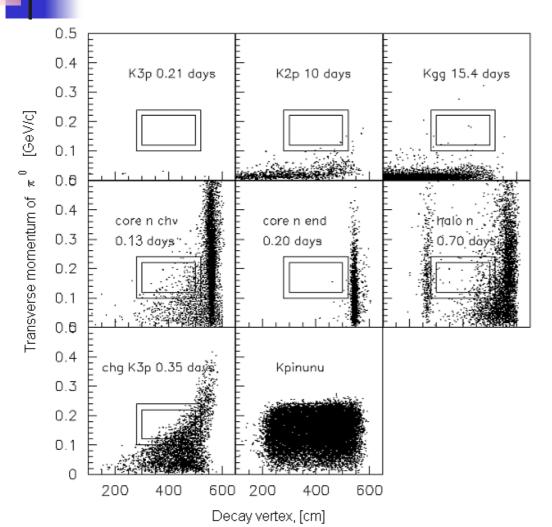
$$\frac{N^*(K3p)}{N^*(K2p)} = 1.02 \pm 0.04$$
$$\frac{N^*(K2p)}{N^*(K\gamma\gamma)} = 0.96 \pm 0.04$$
$$\frac{N^*(K3p)}{N^*(K\gamma\gamma)} = 0.97 \pm 0.02$$

$K_{L}^{0} -> \pi^{0} \nu \nu (\pi^{0} -> \gamma \gamma)$ decay

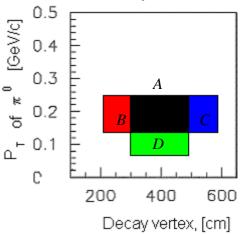

neutron


Backgrounds

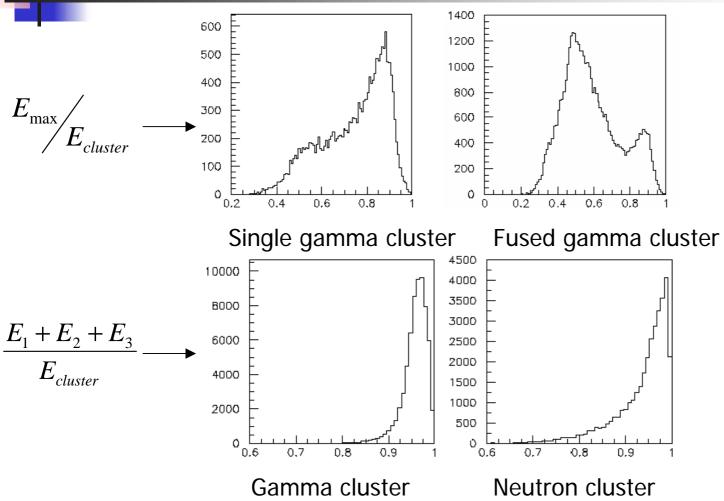
- $K3\pi^0$, $K2\pi^0$, $K\gamma\gamma$
- $K\pi^0\pi^+\pi^-$ where chrg π escape to beam hole
- Halo neutrons make production point @ CC02
- Core neutrons hit membrane produce a peak before CsI calorimeter
 - Need factor ~3 to match the spectrum
 - Contribution from π⁰
 produced @ CC04 end cap of membrane


Core neutron simulation

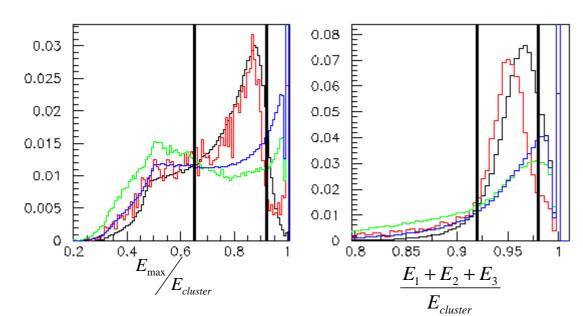
- For MC simulation installed membrane material @ CHV + CC04
 - ρ : 1->10g/cm³, thickness 0.2->2mm
- Open vacuum vessel to confirm the membrane drop

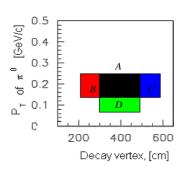

Backgrounds

- Neutral decays are concentrated under signal box
- Core neutrons produce the structure before CsI calorimeter (on the right of signal box)
- Halo neutron born π^0 @ CC02 (on the left of signal box)


"A" sample – $K\pi^0\nu\nu$ MC

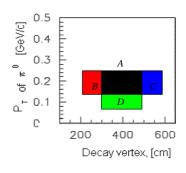
"B,C,D" samples - data

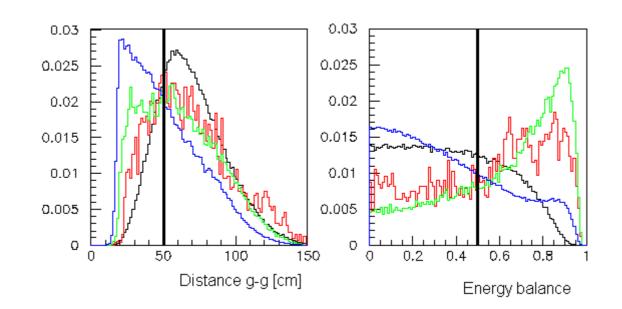



Cluster shape analysis

Cluster shape analysis

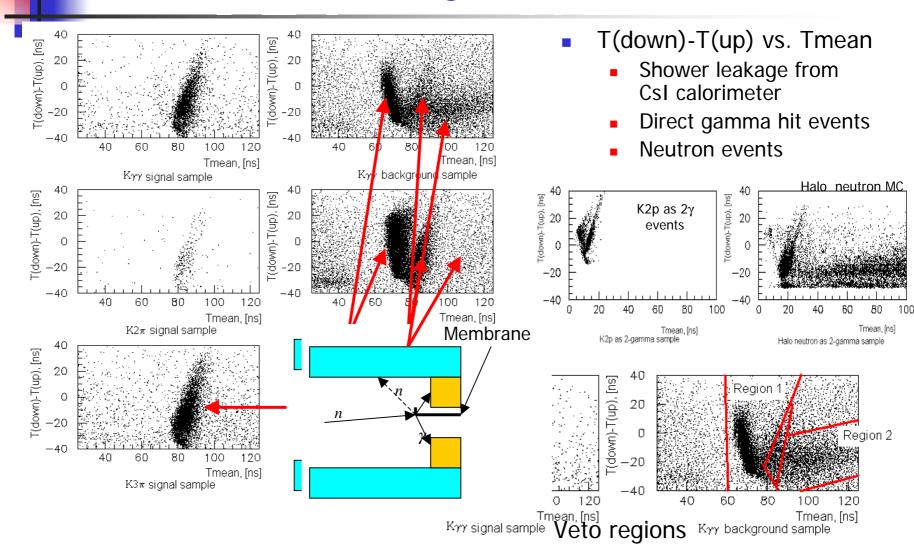
- "D" sample
 - **■** Fusion dominate
 - Neutron events exist
- "C" sample
 - Mixing gamma and neutron clusters
- "B" sample
 - Contains only gamma clusters

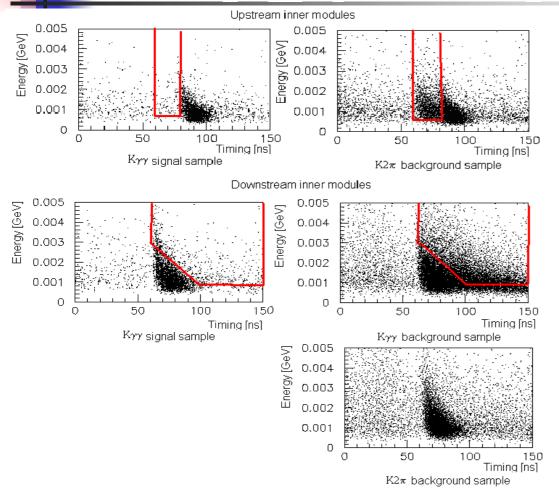




Kinematics of decay

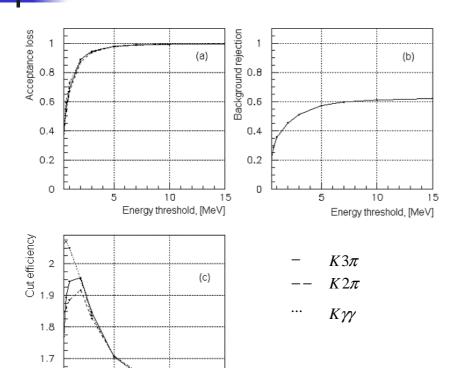
- Clusters produced by neutrons have a small distance between gammas
- Fusion results in unbalanced energy of gamma




Veto study

- Use a real data samples
 - MC response of veto counters is not well tuned yet
 - Contains all effects
 - Correct timing information
 - Pure background and pure signal samples
 - Study the structure of the background
 - Define time window for vetoing
 - Study acceptance loss due to veto cuts of each sample.
 - Extrapolate it to Kπ⁰νν decay

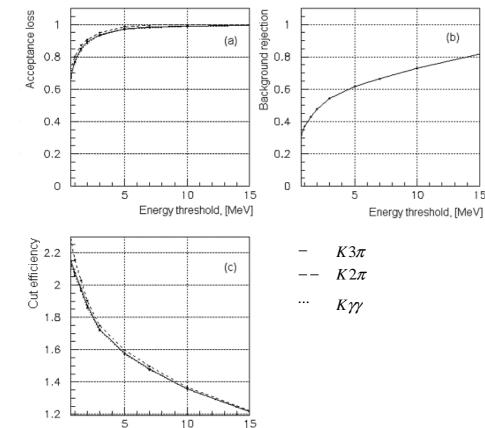
Veto study: MBR inner



Veto study: MBR inner(2)

- If there is only one TDC
 - Energy vs. TDC correlation plot
 - Direct hit and shower leakage can be separated for upstream PMT's
 - Not possible for downstream PMT's
 - Neutron events can be seen for downstream PMT's

Veto study: MBR inner(3)


Energy threshold, [MeV]

1.6

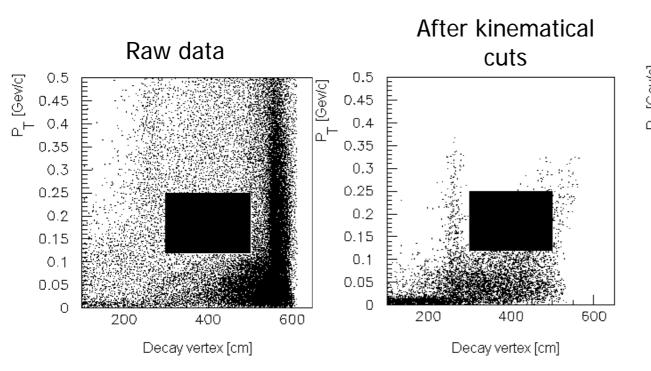
- Acceptance loss is well consistent between 3 samples
 - Doesn't depend on kinematics of decays and number of gammas
- Very efficient for background rejection
- Cut efficiency has a maximum @3MeV

Veto study: MBR outer

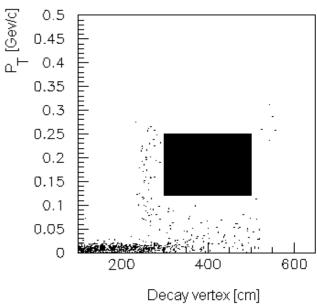
15

Energy threshold, [MeV]

- Outer modules are less suffered by shower leakage
- Less sensitive to acceptance loss
- No maximum for cut efficiency -> 1MeV

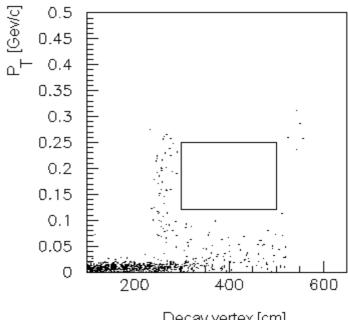

Acceptance loss due to veto

- After applying all veto cuts :
 - $K3\pi$ veto Acc. $(37.4\pm0.8)\%$
 - $K2\pi$ veto Acc. $(38.5\pm3.8)\%$
 - Kγγ veto Acc. (37.9±0.7)%
- Well consistent with each other
 - Timing windows for veto don't touch shower leakage region
 - Acceptance loss mostly coming from accidental
- Total weighted veto acceptance is (37.7±0.5)%
- Kp0nn veto acceptance is (extrapolated) (37.7±0.5)%



Signal box

- P_T vs. Z (decay vertex)
 - 120MeV/c <P_T< 250MeV/c
 - 300cm <Z< 500 cm


Add veto cuts

Signal box

- No events inside
- Events around signal box:
 - π^0 production @ CC02
 - Kγγ decays
 - Core neutron events are suppressed by kinematical cuts

Decay vertex [cm]

•

Acceptance for $K\pi^0\nu\nu$

- Use Kπ⁰νν MC for kinematical cuts
- Use pure signal samples for lose due to veto
- Decay probability is included

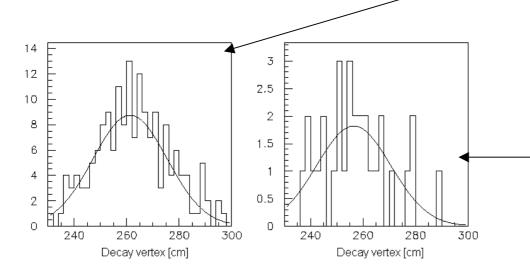
Cuts	Acceptance
Decay + geometry + skimming	5.49x10 ⁻³
E gamma >200MeV	3.55x10 ⁻³
Distance γ–γ >50 cm	2.77x10 ⁻³
$0.92 < \frac{E_1 + E_2 + E_3}{E_4} < 0.98$	1.71x10 ⁻³
$0.6 < \frac{E_{\text{max}}}{E_{cluster}} < 0.92$	9.46x10 ⁻⁴
Energy balance < 0.5	7.56x10 ⁻⁴
signal box: $300 < Z < 500 \text{ cm} + 0.12 < P_T < 0.25 \text{ GeV/c}$	3.20x10 ⁻⁴
Veto	1.21x10 ⁻⁴

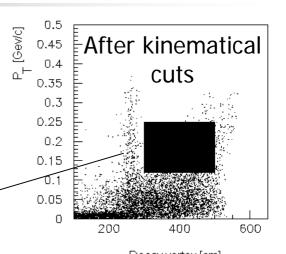
4

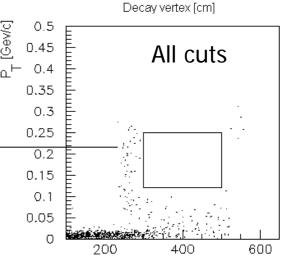
Kπ⁰vv branching ratio

- Acc = $(1.21 \pm 0.03)x10^{-4}$ (decay probability included)
- Normalized on a K3 π :

$$BR(Kpnn) < BR(K3p) \frac{N(Kpnn)}{N(K3p)} \frac{Acc(K3p)}{Acc(Kpnn)} =$$


$$= 0.2113 \frac{1}{29669} \frac{1.41x10^{-5}}{1.21x10^{-4}} = (8.3 \pm 0.2)x10^{-7}$$


$$= (1.91 \pm 0.05)x10^{-6} (90\% CL)$$


• KTeV results BR $< 5.9 \times 10^{-7} (90\% CL)$

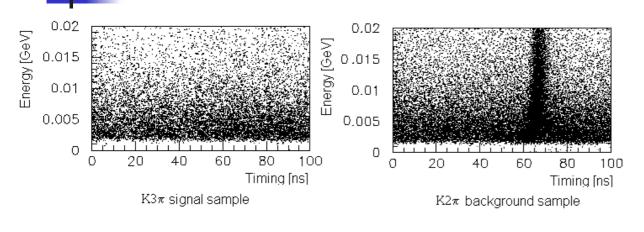
Background estimation in signal box

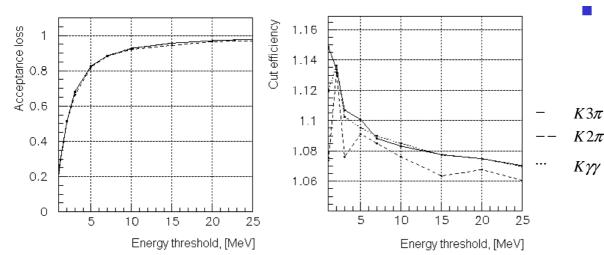
- π^0 production @ CC02
 - ~0.03 events
- KL decays
 - <0.1 from K2p decay</p>
- Core neutron events are suppressed by kinematical cuts
 - Negligible small

Decay vertex [cm]

Conclusions (1)

- E391 experiment successfully run (15.Feb-1July) for data taken
 - Test method
 - Study backgrounds
- Collect 6 TB physics data (~57 days)
 - Stable data taken during long period
 - Various physics data
- Calibration of CsI calorimeter
 - Cosmic and punch through muons calibrations are well consistent
 - π^0 production on a target shows 7% shift
 - Shower leakage
 - Muon momentum spectrum
 - Timing calibration by cosmic
 - Improve gamma timing resolution
 - Trim cables to trigger logic


Conclusions (2)


- Pure signal and background samples of K3π,K2π,Kγγ
 - Background structure
 - Time window for veto
 - Found the events induced by neutron in MBR
 - Exist in Kgg bgr. sample and not exist in K2p bgr. sample
 - Acceptance loss is well consistent among pure signal samples
 - Normalization
 - Pure signal samples are well consistent
- Background sources for 2γ events
 - Beam core neutrons hit some part of membrane, which was found to be dropped
 - Halo neutrons produce the π^0 on CC02
 - Fusion for neutral decay backgrounds is dominated
- No events in signal box
 - Acceptance = $(1.21 \pm 0.03)x10^{-4}$ (decay probability included)
 - BR($K\pi^0 vv$) < $(1.91 \pm 0.05)x10^{-6}(90\% CL)$
 - Full statistics ~ 57 days

Conclusions (3)

- Small acceptance
 - $1.21x10^{-4} = 0.5\% x 2.4\%$ (decay prob.) vs. 8% as proposed
 - Improvement
 - More effective γ/n cluster separation cuts
 - How to distinguish fusion clusters?
 - Clusters near border of CsI calorimeter
 - More careful treatment of veto
- Background limit
 - 0.03 events from π^0 produced @CC02
 - Factor ~33 vs. our full data sample factor ~60
 - Improvement of the decay vertex resolution
 - Reduce the veto threshold for CC02
- This work is a first step of the analysis of E391a data
 - One day run
 - More statistics for background study is needed
 - MC is needed to be more tuned
 - Quick analysis was important for RUN II preparation (Jun.2005)

Veto study: CC07

- Installed just before BA
- Greatly suffered by accidental and backsplash from BA
- Set time window of 3 sigma for veto
- Set energy threshold @ 10MeV
 - Acceptance lose ~ 10%